

HD DVD promising design

September 6, 2004 @ UNAXIS Hisashi Yamada (TOSHIBA)

Agenda

- Environment change
 - Market
 - Display
 - HDD//LSI
- Technical design
 - System design
 - Optical design
 - HD DVD family
- Summary

Environmental change

- Market change
- Technology over shoot
- Internet threat

Market projection Worldwide

Shipment of DVD Video Software

million units **DVD Software Shipment**

- Shipments of DVD Video Software in the USA surpassed one billion units in 2003
- Continued growth is expected for another 5-6 years

Source: Digital Entertainment Group (USA) Japan Video Software Association (Japan)

Digital TV Market - Japan

Digital TV (TV receiver + STB) Market in Japan

Million units

Digital TV Market – the USA

Million units

Source: CEA

LSI design

- Design rule is still emerging
- Integration density will be increased
- Complexity of system can be solved by LSI
- Use advanced signal processing technology – PRML
 - Advanced CODEC
 - Improved Modulation ECC

Role of Optical disc

- ROM Video for content distribution will be principal usage
- Recordable media will be used together with HDD
- HDD became primary storage for time shift recording in the home.
- Recordable/ReWritable Optical disc will be used as archival storage for broadcasted content and download content through the Internet
- HD DVD is suitable for either purpose

Internet piracy

- Down load Activity experience
 - Total: 24%
 - France: 27%, Germany:19%, Italy: 20%, Japan 10%, Korea: 58%, UK :20%, US:24%
- Peer to peer file copy
 - 2.6 billion copy per month
 - Already , loss to the entertainment industry reached to billions of dollars

Environment change

- Display Technology over shoot
 - Too good big display will show current DVD picture quality is poor
- Broadband network threat
 - 28% of general American experienced pirated disc downloaded through Internet
 - Actual damage on business might begin in 2006?
- Need promotion of secure environment in advance. HD DVD can realize quick introduction and long format life for the future

Comprehensive System Design Target

- Provide sufficient quality necessary for HD movie content
- Provide sufficient capacity for 132min movie
- Add new features on current DVD and Internet connectivity
- Provide secure content protection
- Use current DVD production facility and know how already accumulated
- Make low cost production of disc possible
- Assume HDD with ODD in usual home environment
- Optimum design using most advanced CODEC and LSI technology

Technical design

- Reasonable design considering the essential condition for the next generation DVD
- Consistency with DVD
- Optimum from user's point of view

viewed through atomic force microscope 4um x 4um

min. pit length C pit width 0 capacity 6

1.60 um gth 0.83 um 0.50 um 650 MB track pitch0.74 ummin. pit length0.40 umpit width0.35 umcapacity4.7 GB

Track pitch	0.40 um
min. pit length	0.204 um
pit width	0.25 um
capacity	15 GB/30GB

CD>>DVD>>HD DVD

- CD: 1.2mm substrate open a way to use precision injection technology and digital signal processing for bit data (modulation and ECC)
- DVD: 0.6mm bonding structure open a way to use bonding technology of two discs and more sophisticated digital signal processing and compression technology and digital copy protection
- HD DVD: To develop ?

Technology selection

	CD	DVD	HD DVD (BrD)
Substrate Thickness	1.2mm	0.6mm x 2	0.6 x 2 (0.1)
NA	0.45	0.6	0.65 (0.85)
Capacity (GB)	0.78	4.7/8.5	15/30 20/32 (25/50)
CODEC	none	MPEG2	MPEG4 AVC VC1/MPEG2 (MPEG2>>Same

Optical characteristics of HD-DVD/DVD/CD compatible head

Disk Objective lens Wavelength selective filter				
	HD-DVD	DVD	CD	
Wavelength	405 nm	660 nm	790 nm	
NA	0.65	0.60	0.45	
Focal length	2.60 mm	2.68 mm	2.70 mm	
Disk thickness	0.6 mm	0.6 mm	1.2 mm	
Working Distance	1.2 mm	1.304 mm	1.099 mm	
Magnification	0	-0.0164	-0.0766	
Object distance	INF.	165.24 mm	37.27 mm	
Wavefront aberration	0.0001 λrms	0.0063 λrms	0.0017 λrms	
Chromatic aberration	0.63 µm/nm	0.16 µm/nm	0.11 µm/nm	
Wavefront aberration (±0.2mm objective lens	0.0001 λrms	0.0071 λrms	0.0258 λrms	
Field angle / Image height (35mλrms tolerance)	±0.74 deg. / ±34.2 μm	±0.57 deg. / ±25.6 μm	±0.42 deg. / ±19.2 μm	
Disk tilt(35mλrms	±0.15 deg.	±0.34 deg.	±0.56 deg.	
tolerance)			TOSHIBA	

Technical design parameters

Substrate

Systems to be compared

- (A) Current DVD
- (B) 0.1mm cover layer & 0.85 NA system
- (C) 0.6mm cover layer & 0.65 NA system

		(A)	(B)	(C)
Wavelength	λ (μm)	0.65	0.405	0.405
Refractive index	<i>n</i> ₀	1.58	1.62	1.62
Numerical aperture	NA	0.6	0.85	0.65
Cover thickness	d_0 (μ m)	600	100	600

Issues to be discussed

- Cover-layer thickness error
- Disk-tilt
- Depth of focus
- Dust on cover
- Tracking error signal (L/G and G-only)

Optical scheme

No aberration when cover thickness is d_0

and refractive index is n_0

,

Models

(1) Well known formula :

$$W(r) = W_{40}r^4 = \frac{\left(n_0^2 - 1\right)}{8n_0^3}d\left(NA\right)^4 r^4$$

(2) By geometrical optics — This calculation

$$W(r) = \left\{ \sqrt{n_0^2 - (NA)^2 r^2} - n_0 + (1/n_0) - \left(\sqrt{1 - (NA)^2 r^2} / n_0\right) \right\} d$$

Thin substrate will not give any advantage over thick substrate

Conclusion for cover-layer thickness error

Margin $d_{\rm m}$ is defined so that the following expression holds:

"if $|d| < d_{\rm m} = \gg w_{\rm RMS} < 0.0293(\lambda)$ "

			(A)	(B)	(C)
Wavelength	λ	(µm)	0.65	0.405	0.405
Refractive index	n_0		1.58	1.62	1.62
Numerical aperture	NA		0.6	0.85	0.65
Cover thickness	d_0	(<i>µ</i> m)	600	100	600
thickness margin	d _m	(<i>µ</i> m)	30	2.9	12.7
			DVD specification		

Optical scheme

RMS value of phase error

(1) Well known formula :

$$W(r,\phi) = W_{31}r^3\cos\phi = \frac{(n_0^2 - 1)}{2n_0^3}d(NA)^3r^3\cos\phi$$

(2) By geometrical optics : This calculation

 $W(r,\phi) = Optical Path Difference$ (geometrica lly calculated)

Comparison between the two models

>> Tilt servo

Conclusion for disk-tilt

Tilt margin $\theta_{\!m}$ is defined so that the following expression holds:

1 1	111		~ /			
			(A)	(B)	(C)	
Wavelength	λ	(<i>µ</i> m)	0.65	0.405	0.405	
Refractive index	n ₀		1.58	1.62	1.62	
Numerical aperture	NA		0.6	0.85	0.65	
Cover thickness	d_0	(<i>µ</i> m)	600	100	600	
Tilt margin	$\theta_{ m m}$	(mrad)	6.9	6.4	3.2	

"if $|\theta| < \theta_{\rm m} = \gg w_{\rm RMS} < 0.04(\lambda)$ "

Depth of focus

Optical scheme

Depth of focus

Diffraction model

$$W(r) = n_0 d_f \left(1 - \sqrt{1 - (NA)^2 r^2} \right)$$
(a) Scalar model
(b) Vector model
(c) Circular polarization
(c) Circular pol

Depth of focus

Depth of focus

Depth of focus

Radial tilt margin improvement

Experimental results of radial tilt servo for ROM disc

Dust noise

Model

Conditions of dust-noise simulation

Scanning velocity	V	(m/s)	3.49
Areal density of dust	D _a		0.02
Res. Band Width	RB W	(kHz)	1.0
Dust diameter	d_0	(µm)	1~20

Dust noise

Error Correction Code

Data Sector

- : 2064 bytes
 - = 4 ID + 2 IED + 6 RSV
 - + 2048 Data + 4 EDC

- ECC Block
- Inner code
- Outer code
- Row Interleave
- Correctable burst error length
- Buffer memory

- : 32 Data sector
 - = 2 RS Product Code
- : RS(182, 172, 11)
- : RS(208, 192, 17)
- : Every 12 rows
- : 4.6mm for 30Gbytes disk
- 7.0mm for 15Gbytes disk
- : 160KB

Random error correction capability

Modulation method

	(2,3,1,9) modulation
Conversion rate	2:3
Minimum runlength	2 T
Maximum runlength	10T
DC component suppression control	possible
Additional DC control bit	0%
PRML signal processing	suitable

Comparison of spectrum

Channel clock Proposal : 64.8MHz Current DVD : 22.16MHz

PRML

- Can provide about 20% more capacity than slice method
- SbER, PRSNR were introduced to measure disc characteristics without measuring actual bit error for volume production line
- SbER, PRSNR is rather analog parameter to estimate actual error rate

Binary data recording with Slice method

PRML (Partial Response Maximally Likelihood)

• Multi-level recording : Assuming interaction between symbols, and estimates the most likelihood signal trajectory . Pit more than limit of OTF can be read

PRML (Partial Response Maximally Likelihood)

From the difference of trajectory the actual series of pits can be estimated

Concepts of ROM/Rewritable/R

- Compatibility between ROM and rewritable disc
- Random writing
- Easy reading of physical address
- Defect management
- -R is same as ROM

Merit of Land & Groove format

Tracking error signal amplitude

Land & Groove Format Brings Large Tracking Error Signal

Advantages of current DVD

- DVD-RAM
 - Random access by block writing
 - High track density by land and groove format
 - Defect management on physical layer
- DVD-RW
 - Almost same readout data signal as DVD-ROM by wobble and Land Pre-Pit(LPP)
 - Continuous groove

Current DVD-RAM

• Single spiral track

- Tracking polarity should be switching every one revolution. Makes drive design difficult
- CAPA
 - Header is not set at the center of beam spot-difficult to make Pick up

Current DVD-RW

• Loss less linking makes error bits. Because some connection data are damaged by loss less linking, because there is not buffer area.

- Land Pre-Pit (LPP)
 - -LPP reading is difficult because it is not set at the center of beam spot.

Compatibility between ROM and ReWritable disc

- Wobble address scheme realizes same ROM data format as ReWritable.
- New wobble address allows to read both land track and groove track address even Land & Groove format is used.
- Simple mastering by 1beam mastering machine is achieved

Gray code and L & G format

L	Ν	N+1	Ν	
G	Ν	N+1		•
L	N+1	N+2		
G	N+1	N+2		
L	N+2	N+3		
G	N+2	N+3		

Wobble address

- Groove width modulation gives address signals for land track.
- Gray codes are adopted for address data.
 Only 1 bit of track address data is different from adjacent track address data.

Random writing

- Recording block consists of one ECC block, and the recording block has buffer area for linking. Therefore, loss less linking is available without error.
- Start point of the recording data is shifted randomly within 168 channel bits for increasing over write cycle.

Recorded data

Easy physical address reading

• Wobble address signal uses phase modulation.

And 84 % of wobbles is fixed phase. Therefore, wobble PLL ca be locked easily.

Defect Management

- Defect management tables are located at Lead-in area and Lead-out area.
- Defect management will be made by drive

Land and Groove format

- Land and Groove track structure
- Double spiral track
 - Continuous groove track
 - Continuous land track
 - Transition from Land to Groove will not require additional memory
 - No track switching during a recording

Zoned CLV format

- Zoned CLV in rewritable data area
 - The number of zone in the Data area is 19.
- CLV in embossed data area
- Low density embossed pits in Lead-in area – Common for ROM and rewritable disc

Conclusion

System allowances are theoretically studied and are summarized bellow

			(DVD)	(BrD)	(HD DVD)
Wavelength	λ	(<i>µ</i> m)	0.65	0.405	0.405
Refractive index	n ₀		1.58	1.62	1.62
Numerical aperture	NA		0.6	0.85	0.65
Cover thickness	d_0	(<i>µ</i> m)	600	100	600
Thickness margin	d _m	(<i>µ</i> m)	30	2.9	12.7
Tilt margin	$\theta_{\rm m}$	(mrad)	6.9	6.4	3.2
Depth of focus	d_{f}	(<i>µ</i> m)	0.370	0.097	0.187
Dust noise	N	(dB)	N_0	N_0 +10 ~ 20	$\exists N_0$

DVD Forum

- Steering Committee on June 9-10
 - MPEG2, MPEG4 AVC(H.264) and VC-9 were approved as mandatory CODEC for Video
 - HD DVD-ROM Ver. 1.0 was approved
- WG-11/TG11-1
 - HD DVD-R round robin test has been made and will be finished in August, 7companies submitted good sample discs
 - Draft specification for Ver.0.9 was distributed
 - HD DVD-R specification Ver. 0.9,
 - **RRT**(16companies participated) is finished
 - To be approved at Sept. Steering Committee

WG-11 members (79 companies as of March 24, 2004)

Almedio Inc. **ALPINE Corporation** AMC CO., LTD ASAHI KASEI MICROSYSTEMS CO., LTD. AudioDev AB **Cheertek Inc. Ciba Specialty Chemicals Holding Inc. Cinram Manufacturing Inc. CMC Magnetics Corporation** Columbia Music Entertainment, Inc. **CREST NATIONAL** DCA Inc. **Deluxe Media Services, Inc.** DiskWare CO..LTD. **Digital Theater Systems, Inc. Dolby Laboratories Inc. Eclipse Data Technologies** FUJI PHOTOFILM CO., LTD. Funai Electric Co., Ltd. Hitachi, Ltd. **IBM** Corporation Industrial Technology Research Institute (ITRI)RITEK CORPORATION (V-chair) INFODISC TECHNOLOGY CO., LTD.

Interaxia AG **KENWOOD CORPORATION** Leader Electronics Corp.

LG Electronics Inc.

LITEON IT Corp. **LSI Logic Corporation** MediaTek Inc. **MEMORY-TECH CORPORATION** Meridian Audio Limited **Microsoft Corporation MIPS** Technologies **Mitsubishi Chemical Corporation Mitsubishi Electric Corporation** MITSUI CHEMICALS, INC. Moser Baer India Limited **NEC Corporation (Chair company) Optodisc Technology Corporation PIONEER CORPORATION**

Pixonics, Inc. **Prodisc Technology Inc.** PULSTEC INDUSTRIAL CO., LTD. **RICOH COMPANY, LTD.**

ROXIO, Inc. SAMSUNG ELECTRONICS CO., LTD. SANYO Electric Co., Ltd (V-chair) Scientific Atlanta Inc.

Seiko Epson Corporation

SHARP CORPORATION

Shibasoku Co., Ltd. Shinano Kenshi Co., Ltd. Sigma Designs, Inc. SINGULUS TECHNOLOGIES AG SKC Limited. Sonic Solutions STMicroelectronics K.K. Sunext Technology Co., Ltd. **TAIYO YUDEN CO., LTD TDK Corporation TEAC CORPORATION Texas Instruments Japan Limited** Thomson Time Warner (V-chair, Ex-chair)

TOPTICA Photonics AG Toshiba Corporation (V-chair, Ex-chair) **Twentieth Century Fox Film Corporation** Unaxis Balzers Ltd.

Victor Company of Japan, Limited

Walt Disney Pictures & Television **YAMAHA CORPORATION Yokogawa Electric Corporation Zoran Corporation**

Video application

- New advanced and efficient CODECs - MPEG4 AVC/ VC-1/ MPEG2
- New interactive features
 - Combination with web content
 - Improved graphic
- Internet capability
 - Access content provider web site
 - New application

Multi-CODEC

Bit rate reduction for High Definition content

Example

90min HD content @ 8Mbps = 5.45GB 90min SD content @ 1Mbps = 0.7GB 90min 3language × 2sets = 1.4GB 7.55G

15GB blue laser DVD_{132min} HD content @12Mbps = 12GB

132min SD content @1Mbps =1GB

132min 3 language tracks × 2sets =2GB

30GB blue laser DVD

132min HD content @ 12Mbps = 12GB 132min SD content @ 1Mbps = 1GB 132min LPCM 48ksample 20bit $5.1ch = 4.56GB \Rightarrow 3GB*$ ×3language=9GB * If lossless coding is applied 70

15GB

Copy protection

- AACS (Advanced Access Content System) was announced to the public at CPTWG on July 14th.
 - Founders(8company) : Disney, IBM, Intel, Matsushita, Microsoft, Time Warner, Toshiba, Sony
 - AES 128 bit encryption
 - Tree based Media Key Block to make precise key revocation
 - Enhanced Drive Authentication –Device key for drive
 - Network connectivity
 - Disc manufacturer ID bound to key
 - Unlock content by internet
- New business opportunity for Content holders
- HD DVD will adopt this technology
- BD might adopt this technology

- The newly developed optical head can drive CD, DVD and HD DVD discs with <u>single objective lens</u>.
- More economical than dual-lens head or dual optical heads

3 Laser diodes System

	CD	DVD	HD DVD
Wave length	780nm	650nm	405nm
Lens NA	0.45	0.6	0.65
Substrate thickness	1.2mm	0.6mm	0.6mm
Working distance	1.5mm	1.7mm	1.7mm

Read out signal eye-pattern

DVD
Second generation DVD specification

		HD DVD	Blu-ray	DVD
Capacity (Single/Doubl e)	ROM	15/30 GB	25/50?GB	4.7/8.5GB
	-R	15GB	? GB	4.7GB
	RAM/RW	20/32~ GB	25/50 GB	4.7GB
Laser wave length		405nm	405nm	650nm
Disc structure		0.6mm ×2	0.1mm cover +1.1mm sub.	0.6mm ×2
NA	Pick Up lens numerical aperture	0.65	0.85	0.6
Disc thickness error	Single layer Dual layer	55+-15µm 20+-5µm	100 ± 3µm	

Disc spec summary

- BrD has slightly more capacity than HD DVD
- Capacity difference is disappearing because of efficient CODEC
- Manufacturing cost is the key issue for ROM
- HD DVD-ROM manufacturing is already completed
- Refer the examples

Second generation DVD specification Summary

- New copy protection will be applied
- The advanced efficient CODECs will be applied to Standard Definition content and High Definition content
- New CODECs will extend recording time 2-3times
- The new Video specification will be applied to both red laser DVD and Blue laser DVD
- Some advanced features like web connectivity will be introduced

Basic Concept of HD DVD Video

Bit rate calculation

Y2002: MPEG2 22M bps was adopted for DVHS and Japanese broadcasting by Constant bit rate

⇒6-12Mbps is enough to provide equivalent picture quality after 2years

⇒More bit rate reduction (30-50%) can be expected by Variable Bit Rate

⇒15GB(HD DVD single layer) can provide enough playing time 8Mbps 132min movie: 8GB LPCM 5.1ch, 48k s/s , 16bit : 4.6Mbps => 3Mbps (with lossless)

Example

8.5GB red laser DVD—SD long time 12hr

660min(10Hr) SD content @1Mbps =5.45GB | 7.54

660min Audio: AC-3 @384kbps =2.09GB GB

15GB blue laser DVD— SD long time 24hr

24hr SD content @ 1Mbps = 10.9GB

24hr Audio: 384kbps(AC-3) = 4.18GB

30GB blue laser DVD—SD long time 47hr


```
47hr SD content @1Mbps = 21.36GB
47hr Audio @384kbps=8.2GB
```

29.56GB`

15.08GB

Disc manufacturing

JCII2003

OSHIBA

HD DVD disc manufacturing

- Memory Tech new manufacturing line can make ldisc/3.5sec.
- It can change production line from DVD to HD DVD or vice versa in 5 minutes
- **90-95%** yield is already achieved
- Cost for the new manufacturing line is almost same as existing line
- Naturally, HD DVD manufacturing line will be increased to 20-50% of total DVD manufacturing line within 3 years
- The existing manufacturing line can be used at a little longer cycle time

New DVD/HD DVD compatible line

HD DVD yield merits

- DVD/HD DVD compatible player can be realized at reasonable cost – steady and smooth introduction of player can be expected
- DVD/HD DVD compatible disc manufacturing line will be introduced without costly new investment
- Compatible player deployment can rely on current DVD titles at the introduction
- Source tape in the studio is already HD quality by HD telecine.

Summary

- Comprehensive design to establish :
 - Low cost disc manufacturing
 - Compatible disc manufacturing with DVD/HD DVD
 - Sufficient recording time for content providers
 - Superior picture quality for general consumers
 - Reasonable optical system for compatible player
 - Security by AACS
 - Smooth transition from DVD to HD DVD
- Enjoy HD Video quality pictures!