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ABSTRACT 

Starting from experimental results and first-principle simulations we have developed a transport model for 
amorphous chalcogenides based upon a hopping process among traps. The conduction mechanism is  suitably 
modeled by means of a generalization of the variable-range hopping, and studied stochastically through Monte Carlo 
simulations. The transition rates available in the literature have been modified by incorporating the effects of the 
local electric field. The improved model is able to reproduce the S-shaped current-voltage characteristics of these 
materials. 
Simulations have shown that the snap-back effect in the J(V) curve can be ascribed to the formation of domains of 
opposite charges within the material close to the contact region, acting as a positive feedback for carriers. A 
microscopic particle description is also used to detect the formation of filaments inside the chalcogenide material. 
 
Key words: amorphous chalcogenides, charge-transport model, current-driven Monte Carlo simulation, phase-
change memories. 

 1. INTRODUCTION 

The need for new, compact, high-density, reliable storage devices represents a challenge for modern electronics. 
Non-silicon materials like GST chalcogenides have been investigated for decades. Nowadays they represent the 
standard technology for optical storage due to the easiness to obtain the phase transition that makes them to switch 
between the ON/OFF states. More recently an intense effort has been carried out to use such materials also in the 
solid-state memory technology.  
By means of experimental structural data1,2 and first-principle studies3-6 it was found that the long-range disordered 
atomic structure of amorphous chalcogenides implies the presence of a large concentration of localized states. On 
the microscopic scale the localized states originate from structural defects like dangling bonds and vacancies, and 
may give rise to either donor- or acceptor-like traps. From these considerations one may assume that an appropriate 
model for electric conduction in chalcogenide glasses must consider a trap-controlled transport process,7-9 namely, a 
hopping of charge carriers through localized states. 
In the following sections we present a model based on a modified variable-range hopping process, an early version 
of which was presented at E*PCOS 2008. A more detailed and comprehensive discussion of the results, including 
considerations about the conditions for threshold switching and the formation of filaments, is also given. 

2. THE PHYSICAL MODEL AND THE SIMULATIVE FRAMEWORK 

The model is based on the assumption that a carrier can hop among traps in the chalcogenide region through direct 
or thermally-assisted tunneling.10,11 Within such a conduction framework, a 3D model of charge transport due to 
electron hopping among donor-type traps has been implemented using a Monte Carlo procedure. As test case we 
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consider a simple device made of a layer of amorphous GST in contact with two metallic electrodes, as sketched in 
Fig. 1. 

Due to the amorphous nature of the material under investigation, 
traps have randomly been positioned inside the sample, and an 
energy level Ei, chosen at random within a narrow band of width 

EΔ  is ascribed to each trap. Traps can host only one carrier at a 
time: they are positively-charged if they can still host an electron, 
otherwise they are neutral. A second set of negatively charged 
traps, corresponding to acceptor states that compensate the 
material, are also considered in order to guarantee the electrical 
neutrality. These traps are always filled by carriers and do not 
contribute to the transport process.  
Contacts are represented by two infinite reservoirs of both 
carriers and empty states: they can at any time inject electrons 
into the traps or host electrons coming from them. 
Transitions between traps, from traps to contacts and from 
contacts to traps are accounted for following the variable-range 

hopping theory.9 The transition rate Sij for an electron hopping from an occupied site i to an empty site j is evaluated 
according to the following equation: 
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where ν0 represents the attempt-to-escape frequency, Tij is the transmission coefficient of the potential barrier 
between the sites i and j, which depends on the separation distance Rij and on the height and shape of the barrier; 

iijj eEeE ϕϕε −−+=Δ  indicates the energy difference between the initial ( iE ) and final ( jE ) electron states, iϕ  
and jϕ  being the electric potential associated to the i-th and j-th trap, respectively.  
It should be pointed out that in the original formulation12 of Eq. (1), the dependence of the energy barrier between 
the scattering centers on the electric field is missing. This is clearly not realistic for the case at hand. Here, Tij is 
considered as proportional to the overlap integral of the exponential tails of the electron wave functions in the 
barrier region, this yielding: 
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In Eq. (2) α0 is the inverse of the characteristic tunneling distance at const=ϕ , m0 the electron mass and β a 
phenomenological parameter, whose effect is discussed in section 3. 

The standard voltage-driven Monte Carlo framework has been modified into a current-driven simulation necessary 
to investigate S-shaped characteristics. The implemented Monte Carlo procedure can be summarized as follows: 

i) Traps are generated at random positions inside GST and are filled according to the equilibrium Fermi 
distribution; the charge on the planar contacts is initially zero. The simulation time ts and the electron injection 
time tI are set equal to zero. 

ii) An electron is added to one contact. The time tI is increased by IetI =Δ (e and I being the electron charge 
and the prescribed current, respectively). 
iii) The potential profile at any site and the voltage drop across the device are evaluated on the basis of the actual 
trap- and contact-occupancy configuration. 

Metal contact 

a-GST 

Current Current 

Figure 1 – Sketch of the modeled device: an 
a-GST region of length l is sandwiched 
between two metallic planar electrodes of 
cross sectional area Σ. 
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iv) The transition rate for any hopping process Sij from site i to site j is evaluated by using the potential profile 
calculated at the previous step. The total hopping probability is evaluated as ∑= i iSSTOT , ∑= j iji SS . 

v) A random number r is generated between [0,1] with uniform probability. The time of occurrence of the next 
hopping process is calculated as TOTln Srt −=Δ . The simulation time ts is updated by Δt. If the updated 
simulation time st′  exceeds the injection time tI, the simulation time is set back to tI and the procedure is cycled 
from step ii) without performing any further action; otherwise the new time ss tt ′=  is accepted. 

vi) The starting trap i is chosen according to the probabilities Si and, subsequently, the arrival trap j is selected 
according to Sij. Contacts are considered as additional traps. 
vii) The carrier hopping from trap i to trap j is performed and the occupancy values are updated. If the total 
simulation time tMAX is reached the numerical procedure is concluded, otherwise it is cycled from step iii). 

The computation of the electric potential at the trap sites is of great importance in the model, due to the form of Eqs. 
(1) and (2). A fully 3D solution of the Poisson equation is necessary. A self-consistent solution of the Poisson 
equation brings about the non-negligible drawback of a very high computational load. The problem is tackled as 
follows. The local potential is calculated as the sum of two contributions: one accounting for donor and acceptor 
centers inside the a-GST, and one produced by the two contacts, the latter being always described as planes with a 
uniform charge density. When trap-to-trap transition rates are evaluated, the charged traps are modeled as 3D point-
like Coulomb centers. When the trap(contact)-to-contact(trap) transition rates are calculated, the trap potential is 
modeled as that of a charge sheet placed at the trap position and parallel to the contact, with a total charge equal to 
the trap charge. Despite the approximation of the trap-electrode interaction to a 1D problem, the two main features 
of the computation, i.e., the correctness of the boundary conditions at the electrodes and the self-consistency 
between the electric potential and electron dynamics are preserved. 

3. RESULTS & DISCUSSION 

In Fig. 2 we report the J(V) characteristic for the simulated device ( nm 27=l and 2nm 900=Σ , see also the caption 
of Fig. 2) obtained by tuning the parameters of the model on experimental data10. For each simulation point a 
number of independent runs have been performed at a given current I and the results averaged.  
Up to the threshold current, the shape of the J(V) curve is in good quantitative agreement with the experimental one 
and it is also consistent with previously-developed analytical models.10,13 The typical features of an a-GST current-
voltage characteristic are reproduced by the model: an initial Ohmic region at the lowest currents, followed by a sub-
threshold exponential region and, then, by a negative differential-resistance region where the potential difference 
between the contacts is reduced at increasing currents. The values of both voltage and current density at the snap-
back point correspond to the experimental data.  
At higher currents, the simulated curve shows a fast increase in the potential drop instead of a swift rise of the 
current, suggesting the existence of a limiting current. This behavior can also be theoretically predicted by a 
qualitative analysis of the equations, and is a consequence of a trap-limited transport scheme. A realistic transport 
model under these high-current conditions must account for other physical features like, e.g, band conduction. 

The advantages of the Monte Carlo simulation can be fully exploited in the interpretation of the results, that can be 
analyzed in terms of a microscopic particle description (Figs. 3a and 3b). In the whole sub-threshold region, 
(corresponding to 25 cmA10<J ), the occupation fraction is almost constant along the device around the value of 
0.5, this meaning that the space charge due to donor and acceptor traps in the GST region is uniformly distributed 
and compensates on average. The charge on the contacts increases with J, thus creating a stronger electric field 
inside the device and allowing for long-range transitions, which become more and more probable due to the 
lowering of the energy barrier induced by the applied field. As the current increases, hopping process looses 
efficiency in transferring carriers from the GST region to the collecting contact, and charges tend to accumulate in 
the region close to the drain contact. As a consequence, an internal counter-field adds to the one generated by the 
two contacts, as shown in Fig. 3c. The initial linear drop existing between the two electrodes turns into a more 
complex shape resulting from the superposition of contributions coming from differently-charged regions. The net 
effect is the decrease in the electric field as the current increases, giving origin to the snap-back point. A higher 
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current can be sustained only with more frequent 
transitions. This is made possible by depleting the 
GST region close to the injection contact (the 
occupation fraction quickly goes down to values 
close to 0), and filling the region close to the 
collecting one (the occupation fraction rises up to 
values close to unity). As a consequence, the 
counter-field is enhanced and eventually produces 
the feed-back effect necessary for the snap-back of 
the current-voltage characteristic. When the 
occupation fractions have reached their limiting 
values, a further increase in the external current 
cannot be sustained any more, the charge 
accumulates indefinitely on the contacts and charge 
transport cannot take place any longer across the 
GST region at the desired rate. 

As reported in the previous section, the model 
contains the following physical quantities and 
parameters: the trap concentration Nt, the attempt-
to-escape frequency ν0, the characteristic tunneling 
distance α0, and the coefficient β. At present, most 
of them are unknown or known only qualitatively. 
From a complete analysis of the influence of each 
parameter on the J(V) characteristics, we have 
found that only two of them play a key role in the 
occurrence of the snap-back effect: the trap 

concentration Nt and the β coefficient (see Figs 4a and 4b). They both influence the formation of domains of 
opposite charges in the two regions close to the electrodes. When the concentration of the traps is below 

318 cm 105 −⋅ , the switching behavior is not present: in this case the contribution from the two domains on the 
counter-field is not sufficient to originate the feed-back effect necessary for a negative differential-resistance 
behavior. When the number of traps inside the device increases above this value the snap-back effect becomes more 
and more evident. An even stronger influence on the shape of the J(V) characteristic is provided by β, i.e., by the 
incorporation of the effects of the local electric field on the transition rates. By means of numerical simulations, also 
supported by analytical calculations, it can be demonstrated that if a constant value for α is considered (that is, by 
setting 0=β  in Eq. (2)), the current reaches an asymptotic value without a potential snap-back. This is 
understandable by considering that the local field plays the role of a lowering (or enhancing) agent for the energy 
barrier that confines a carrier in a trap site; in the framework of the modified variable-range hopping adopted here 

(a) (b) (c)

Figure 3 – Number of charges inside the device and on the two contacts (a); trap-occupancy fraction (b) and potential 
profile (c) along the longitudinal axis. For the two last plots, data have been collected averaging values over 15 1.8 nm-
wide bins. Carriers enter the device from the right contact. 

Figure 2 – Experimental and simulated J(V) characteristics. 
The voltage values have been obtained as averages of the 
final output over 192 independent simulations per current 
step. The  simulation time was adapted in each current step to 
ensure that the stationary potential profile is reached, varying 
it from 0.1 to 1 ns. 
The parameters used for the Monte Carlo simulations are: 
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this means enhancing or decreasing the hopping probability through tunneling. When the α value calculated by 
means of Eq. (2) gets close to zero, long-range transitions become frequent and carriers are easily transferred across 
the device from one contact to the other. The transfer rate inside the device becomes higher than the one necessary 
to reach the collecting contact. Consequently, a negative domain facing the contact is formed, this contributing to 
the rise of the snap-back effect. As a rule of thumb given the value of α0, the greater the value of β is chosen, the 
more evident the negative-differential resistance region is found. These considerations confirm the basic 
assumptions and the results found by a previous model.10 The other parameters have a minor importance and may be 
used for a fine tuning of the simulated data. 

It is often believed that S-shaped characteristics are generated by the formation of current filaments in the material, 
but a one-to-one correspondence between filamentation and S-shaped characteristics cannot a-priori be established. 
The latter can exists also without filaments.14 The Monte Carlo investigation allows one to look at the trajectories 
followed by carriers while moving from one contact to the other one. In the four left panels of Fig. 5 we report the 
probability distribution of the number of hops needed to transfer from one side to the other one at increasing 
currents. 
In the sub-threshold Ohmic region carriers pass through a high number of traps before reaching the collecting 
contact, moving often back-and-forth in a diffusive regime. The mean and the mode of the distribution are around 
140 and 55 hops respectively, and the relative frequency never exceeds 0.65%. Things go differently as the current 
increases, as illustrated by the next panels. As soon as the snap-back condition is reached, a growing number of 
trajectories involve less and less traps, and many of them are concluded within 2 to 4 hops. The mean value of the 
hop distribution goes down to 8 for the last current points before the snap-back point and to 3 after it. A quasi-
ballistic regime sets in: in all these cases the most frequent sequences involve only two intermediate traps. Further 
analyses have been performed in order to detect current filaments. Results are reported in the three right panels of 
Fig. 5. In the sub-threshold exponential region carriers usually fill traps close to the contacts, the first hop involving 
traps in the first half of the device and the second hop generally involving the second half. Such a behavior is a 
consequence of the effect of the internal electric field on the energy barriers between the traps and on the transition 
rates. Carriers are transferred from one contact to the other one by means of few long-range transitions and can 
tunnel across half the device (or more), thus enhancing the formation of opposite charge domains close to the 
contacts. After the snap-back point and the negative-differential resistance region, we have observed that traps in the 
mid of the device are more often visited than before, and also shorter transitions occur. 
Going into more details, we have verified that the most frequent path is followed less than 3% of the times, which 
lets us conclude that under the tested conditions the transport process does not show evidences of preferred paths. 
On the contrary, we have found that a two- or three-step scheme involving a long-range transition and one or two 
short hops is often used. 

Figure 4 – Effect of the trap concentration Nt and of the β coefficient on the J(V) characteristics. The other 
parameters are: 16
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Figure 5 – Number of hops needed to transfer a 
carrier from one contact to the other (left) and 
position of the involved traps (right) for the most 
frequent case of three hops. Positions have been 
calculated by means of 30 bins into which the GST 
region has been subdivided. Carriers enter from the 
left. 
Moving from top to bottom, the distributions refer 
to the sub-threshold Ohmic regime (red), to the end 
of the exponential regime (blue), to the end of the 
negative-differential regime (green) and to the 
upper part of the J(V) characteristic (cyan), 
respectively. 
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4. CONCLUSION 

A trap-controlled conduction model for amorphous chalcogenides has been implemented through a Monte Carlo 
procedure, following the suggestion coming from experimental structural information and first-principle studies 
available in the literature. In our model carriers hop through a number of localized states featuring the material; 
transition rates are evaluated by means of a generalization of the Miller-Abrahams expression, obtained by adding a 
dependence of the transmission coefficient on the electric field. In order to correctly account for S-shaped 
characteristics, the standard voltage-driven Monte Carlo framework has been modified into a current-driven 
simulation. The results show that a realistic theoretical transport framework based on a modified variable-range 
hopping yields a complete microscopic description of the mechanism governing the threshold switching and an 
agreement with experimental data. Taking full advantage of the microscopic particle description of the Monte Carlo 
simulation it has been possible to interpret the switching effect by means of domains of opposite charge that 
originate close to the contacts. The possibility of current filaments have also been investigated. 
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