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ABSTRACT 

A microscopic particle description of the charge transport process in amorphous GST (a-GST) is presented in this 

paper, based on the assumption that electrical conduction in the amorphous phase is controlled by defects and trapped 

carriers. The physical model has been implemented in a Monte Carlo simulation coupled to the Poisson equation for a 

simple device formed by a nanometric layer of amorphous GST in contact with two planar metallic electrodes. The 

purpose of our research is to understand how and to which extent different aspects of the microscopic picture 

influence the electrical properties of the device when external tunable parameters, like operating current and 

temperature, are varied. Moreover the role of other parameters, often almost unknown in real devices like, e.g., trap 

energy levels and concentration, trap spatial distribution, is analyzed through focused simulated experiments with the 

purpose of pursuing a theoretical control of the threshold behavior so important for technological exploitation. Results 

obtained so far are compared with experiments, analytical models available in the literature, and the outcome of 

deterministic equations formulated by the authors for the system under investigation. 
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1. INTRODUCTION 

Charge transport properties of the GST (i.e., Ge2Sb2Te5) material, suitably-modeled for describing phase-change 

memory devices, are presently the main focus of a number of research activities in view of the application of this 

material in nonvolatile-memory technology [1–3]. Experimental structural data and charge-transport features of GST-

based devices suggest that electrical conduction in the amorphous phase is controlled by defects and trapped carriers 

[4,5]. Recent ab initio studies of the atomic structure and the electronic and optical properties of a-GST [6] provided 

further insight into the origin of these defects/traps. This was accomplished by an analysis of the atomic structure of a-

GST and of the modification of the coordination number of Ge, Sb and Te, with respect to the cubic phase, when GST 

is quenched from the melt. Ielmini and Zhang [5] provided a good interpretation of the I(V) characteristics obtained 

for an a-GST film between two electrodes by means of an analytical 1D model for the trap-limited conduction. In the 

below-threshold regime they assume that the transfer of an electron between traps and from/to traps to/from contacts 

occurs via thermal emission over the potential barrier (TE) at donor-like traps, described by the Pool-Frenkel model 

suitably modified in order to account for the effect of the charge trapped in the device on the potential barrier. 

Tunneling through the potential barrier separating two traps is accounted for as a TE component, affecting the 

amplitude and the dependence of the current on temperature, but not its functional form [7]. In the above-threshold 

regime the theory of [5] adds to the TE effect also the field-assisted tunneling and the spatial non-uniformity of the 

electric field, which are interpreted as the main effects responsible for the snap-back behavior of the I(V) curve. 

The aim of our work is to formulate a theoretical framework for charge transport in a-GST based on a hopping 

conduction picture, and to apply it in a Monte Carlo simulation of a simple device in order to understand how and to 

mailto:enrico.piccinini@unimore.it


what extent different aspects of the microscopic picture influence the electrical properties of the device when external 

tunable parameters, like operating current and temperature, are varied. Moreover the role of other parameters, often 

almost unknown in real devices like, e.g., trap energy levels and concentration, and trap spatial distribution, is 

analyzed through focused simulated experiments, with the purpose of pursuing a theoretical control of the threshold 

behavior, very important for technological exploitations. Section 2 is dedicated to the illustration of the physical 

model and the theoretical approach. Section 3 illustrates the details of the Monte Carlo simulation scheme and the 

results obtained so far from the simulations. The rate kinetic equations used as ―simple&quick‖ probe of the transport 

model are described in section 4. Section 5 collects the main conclusions of our work so far. Since the model is still 

under development, further refinements in the physical models and improvements in the simulation tools are planned 

for the near future. 

2. THE PHYSICAL MODEL 

In the trap-conduction model we used to describe electron transport in a-GST, the current flow is due to electron 

hopping among donor-type traps. The present numerical implementation includes two donor levels (type-I and type-II 

traps), located 0.01 eV below and 0.29 eV above the Fermi level of the system. In order to guarantee the electrical 

neutrality, a number of acceptor levels, not involved in the transport process, is assumed in order to ensure material 

compensation. Following the variable-range hopping theory [8], electrons are thought to tunnel from one centre to the 

next. The transition rate Sij for electron hopping from occupied site i to empty site j is evaluated according to [9]: 
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where 0 is the attempt-to-escape frequency, R is the distance between the two trap sites,  is a factor depending on 

the overlap of the wave functions and, therefore, on the energy-barrier height between the sites, i is the energy level 

of the trap, and i the electric potential in the ith site. The potential i is determined by both the external bias and the 

trap charges. In this early stage of development of our theory, phonon-assisted tunneling, thermal jumps over the 

barrier, and transitions to the conduction-band states have not been included. 

3. MONTE CARLO SIMULATION SCHEME AND RESULTS 

The model described in the previous section has been implemented into a 3D Monte Carlo simulation of the electron 

motion in an a-GST sample (size: 303030 nm
3
) in contact with two planar metallic electrodes. A number N of each 

type of traps described above are positioned at random inside the sample. All relevant transitions between traps and 

from traps (contacts) to contacts (traps) are accounted for. Eq. (1) has also been used to calculate the transition rate 

from trap to contact and from contact to trap, taking R as the closest distance between the trap and the involved 

contact. 

The simulation is current driven, consistently with the typical experimental setup. This is achieved by adding 

(subtracting) an electron to the left (right) contact every t, with t = e/I (e and I being respectively the electron 

charge and the current intensity). 

The potentials i and j involved in the transition rates from trap i to trap j, Eq. (1), are determined by the contribution 

of the charged contacts, of all of the unoccupied donor traps except trap j, and by the compensating charges. It is 

worthwhile understanding how crucial the description of the electrostatics for reaching a stationary condition is, and, 

from a different viewpoint, also for the device operation itself. 

The self-consistent electrostatics has been dealt with in two different ways either by solving the Poisson equation with 

the finite-element method or by evaluating the potential at each point of interest as the direct sum of the contributions 

of all the present charges. Due to the high computational load required to self-consistently solve the Poisson equation 

in a 3D environment in the transport framework, the second method, though more simplified, was mainly used at this 

stage thanks to its faster implementation. The system showed a high sensitivity to the way electrostatics had been 

accounted for, but the two approaches yielded comparable results under similar conditions. 

The scheme outlined above has been applied to the simple device described at the beginning of this section, for a 

number of different trap concentrations, all comparable with experimental conditions. In Fig. 1 three I(V) curves are 

reported for 50, 100, and 150 traps per type. The results have been obtained at room temperature with 0 = 10
12

 s
-1

. 



The dependence of  in Eq. (1) on the energy-barrier height has been modeled through the following formula [10] 

under the simplifying hypothesis of a rectangular barrier: 
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where 0= 0.2 nm
-1

 and m0 can be viewed as an averaged electron effective mass. 

The voltage values in the three curves of Fig. 1 have been obtained as averages of the final voltage over 25 

independent simulations, each of them lasting 1 ns. This time proved to be enough to reach the steady-state value. The 

data showed a strong dependence on the random geometrical distribution of the traps, justified by the small number of 

traps inside the nanometric-size device. 

The overall shape of the curves is in qualitative agreement with both experiments and previously-developed analytical 

models. In particular we stress that the current at which the snap-back effect takes place is almost constant (about 

1A), consistently with experiments. It is also worthwhile noting that if the number of traps included in the simulation 

is too low, the snap-back effect is not revealed by the calculations. 

The Monte Carlo simulation allows one to explore microscopic features of the system which provide a deeper 

understanding of the snap-back onset. Fig. 2 illustrates the spatial charge distribution (top), the electric field 

component (middle), and the potential profile (bottom) along a direction perpendicular to the contacts for current 

values lower than, equal to, and higher than the reported threshold value for the case of 100 traps per type. We point 

out that as the snap-back effect occurs, the device is subdivided into two well defined domains with opposite charges, 

which produce a non-monotonic behavior of the electric field and, in turn, a maximum of the potential profile inside 

the device. This situation is quite different from the one reported before the snap-back effect, where the charge is 

almost uniformly distributed along the device, and the electric field and its associated potential are monotonically-

increasing functions of the spatial coordinate. 

A better insight of this effect is provided by Fig. 3, where the total charge has been split into its three components 

linked to the three different types of traps. The red curves describe the type-I traps, which below threshold are mostly 

filled, while the green curves show the type-II traps, which below threshold are mostly empty. As the injected current 

increases a charge redistribution occurs, such that the type-I traps are completely filled near the right contact, whereas 

the fraction of filled traps decreases near the left contact. The type-II traps exhibit a similar behavior, however, the 

fraction of empty traps near the left contact is substantially larger for the type-II traps than for the type-I traps. As both 

Figure 1 — I(V) curves obtained with the MC simulation model, with a different number of traps per type 

included in the simulations as indicated in the box. Voltage results have been averaged over 25 runs; the 

standard deviation affecting each point is about 0.05, 0.08 and 0.1 V for 50, 100 and 150 traps, 

respectively. 



type-I and type-II traps are neutral when filled, the compensating charge (blue curves) makes the net charge (black 

curves) increasingly negative on the right half of the device, and positive on the left side. This better explains the 

behavior of the curves of Fig. 2 (top).

Figure 3 — Space charge profile along the 

device for the three currents 1.28 A (top), 

2.56 A (middle) and 5.12 A (bottom). The 

black, red, green and blue lines stand for the 

total charge, the contribution to the total charge 

due to type-I traps, the contribution due to 

type-II traps, and to the compensating charge, 

respectively. Data are collected as explained in 

Fig. 2. 

 

Figure 2 — Total space charge distribution 

(top), electric field (middle) and potential 

profiles (bottom) along the device for the three 

currents indicated in the boxes, using 100 traps 

per type. The total charge is obtained by 

performing first 25 independent Monte Carlo 

simulations, then averaging their results within 

each of the 1.5 nm-wide bins, parallel to the 

contacts, into which the device is subdivided. 

The electric field and the potential have been 

calculated by successive integrations. 



4. RATE KINETIC EQUATIONS FOR A TRAP-LIMITED TRANSPORT MODEL 

In parallel with the Monte Carlo approach, a deterministic model based on rate equations for the traps has been 

devised. To make the model readily consistent with the solution of the Poisson equation, the rate equations are based 

on the concept of box. In each box different types of traps are present, each type being characterized by the position of 

the ground state with respect to the Fermi level at equilibrium and by the energy values of the excited states. The 

electrons stored in the traps belonging to the ith box give rise to the charge density of the box. If the traps of the ith 

box exchange electrons among each other, the charge density of the box is not influenced, however, these exchanges 

influence the dynamics of the electrons and must be accounted for anyhow. 

It is assumed that, for each type of traps, two energy levels at most are involved in the exchanges, labeled Ea and Eb, 

with Eb > Ea. When both levels are filled, the trap is negatively charged. When both are empty, the trap is positively 

charged. Finally, the trap is neutral when one level is filled and the other is empty. In this case it is also assumed that 

the filled level is Ea. With these assumptions, an electron may be emitted by a trap only when the latter is negative or 

neutral, whereas an electron may be captured by a trap only when the latter is neutral or positive. In conclusion, 

depending on the charge content of the traps, four electron-exchange processes may take place: from a negative trap 

to a neutral or a positive one, and from a neutral trap to a neutral or positive one. 

The probability per unit time of an electron transition from a trap at position r´ to a trap at position r´´ depends on the 

charge content if each trap, their distance, and the energy difference between the initial and final level. Such a 

difference, in turn, depends on the type of the two traps and on the distribution of charge within the device. As a 

consequence, the transition probability per unit time is not symmetrical upon exchange between the two traps. 

Another possible exchange process is the electron transition between a trap and one of the contacts. As the latter are 

treated as reservoirs, they are in any case able to receive electrons from negative or neutral traps, and to give electrons 

to positive or neutral traps. Another remark is that the contacts are spatially extended, whereas the traps are point-like. 

As a consequence, one may assume that the distance that influences the transition is the minimum distance between 

the contact and the trap. Direct transitions from one contact to the other are not considered because their probability is 

negligible. 

To simplify the notation, only one type of traps will be considered in this section. The same analysis must be repeated 

for all types of traps. Let Ni , Nj be the concentrations of traps of the chosen type belonging to the ith and jth box, 

respectively. The indices play the role of spatial coordinates, hence they replace the coordinates r´ and r´´ used before. 

The probabilities per unit time of the four possible electron-exchange processes between the traps are indicated with 

Sij
–0

, Sij
–+

, Sij
00

, Sij
0+

, where the left (right) apex indicates the state of charge of the trap emitting (capturing) the 

electron prior to the transition. The expressions of the probabilities per unit time have the form given in Eq. (1). 

Similarly, the probabilities per unit time of the exchange processes between traps of the ith box and the left contact 

are indicated with SiL
–
, SiL

0
, SLi

0
, SLi

+
 (replacing L with R provides the symbols for the transitions to/from the right 

contact). The concentration Ni is the sum of the concentrations of positive, negative, and neutral traps of the chosen 

type belonging to the ith box. It is useful to introduce the fractions i
+
, i

–
, i

0
, ranging from 0 to 1, such that the 

concentration of positive traps is Nii
+
, and so forth. As a consequence, the chosen type of traps contributes to the 

charge density of the ith box as i = eNi (i
+
 – i

– 
), with e the electron charge. In each box the fractions vary with 

time, however they must fulfill the relation i
+
(t) + i

–
(t) + i

0
(t) = 1, so actually only two fractions are independent. 

In the following, i
+
 and i

–
 will be considered. The fractions, as long as the trap concentration Ni , vary also in space. 

This eventually yields a charge density that varies in space and time. For the chosen type, the number of positive 

(negative) traps of the ith box is iNii
+
 (iNii

–
), where i is the volume the box.  

The rate equations are written in terms of the fractions i
+
 and i

–
 of each box. More precisely, they express the time 

variation iNi di
+
/dt as the sum of the electron transitions per unit time that increase i

+
, less the sum of the 

transitions that decrease it. The same holds for iNi di
–
/dt. This provides a set of 2MB equations in the 2MB 

unknowns i
+
 and i

–
, i = 1,2,…, MB. Here MB is the number of boxes belonging to nodes internal to the device or 

lying along the insulating boundaries. The equations are obviously non linear, because the product of the fraction of 

electron-emitting traps times the fraction of electron-capturing traps appears in each summand. To complete the set of 

rate equations it is necessary to add two more equations, that express the time variations of the number of electrons in 

the left and right contacts. They have the same structure as those associated to the boxes, the only difference being 

that it is necessary here to add the contribution of the current generator connected to the contacts. If I is the current 



injected by the generator, such a contribution has the form, say, –I/q for the left contact and I/q for the right one. In 

total, there are MB + 2 rate equations in MB + 2 unknowns. 

The rate equations contain also the probabilities per unit time defined in (1). For a given pair ij of box indices, each 

probability per unit time depends on the difference i – j, where  is the electric potential. It is therefore implied that 

in the solution of the rate equations the electric potential is preliminarily known. This is in fact not true, because the 

electric potential depends on the number of trapped charges, so it is also an unknown. The model is then completed by 

adding the Poisson equation and solving it self-consistently with the rate equations. 

It is interesting to note that the formal structure of the rate equations is similar to that of a standard Boltzmann 

transport equation, namely, ―total time variation = scattering-in – scattering-out‖. The equations contain the indices 

of the cells of the phase space. Those related to the coordinate space are the box indices, i, j. Those of the momentum 

space are the apices ―–‖,―0‖, and ―+‖. In principle, the momentum space should contain all the indices counting the 

energy eigenvalues of the traps. However, as the energy values are all that matters in this context, the number of 

indices is reduced by summing over the indices related to the angular variables and over the spin index, this leaving a 

single index. The number of values of the latter is further reduced by considering only the two energies Ea and Eb, as 

indicated above. Despite the formal analogy with the Boltzmann transport equation, there are important differences 

between the latter and the rate equations of the model presented here. In the collision term of the Boltzmann equation, 

at least in the form commonly used to model solid-state devices, the momentum space is used in its entirety, while the 

coordinate space is eliminated because it is assumed that the transitions due to collisions take place without an 

appreciable displacement of the electron in the coordinate space. In contrast, in the rate equations of the present model 

the momentum space is strongly reduced, whereas the real space is used in its entirety. These differences impose a 

rather non-standard implementation of the numerical-solution schemes, including those of the Monte Carlo code 

described in section 3. 

A significant aspect of the rate equations is that a simplified form of theirs lends itself to an analytical solution. The 

latter shows that the parameter controlling the departure of the device from equilibrium is proportional to the ratio 

I/0. This is sensible from the physical standpoint, since an increasing attempt-to-escape frequency 0 balances the 

effect of the driving signal I. 

5. CONCLUSIONS AND PERSPECTIVES 

An approach to the transport problem in amorphous GST materials, based on the assumption that the electrical 

conduction in the amorphous phase is controlled by defects and trapped carriers, has been shown in this paper. The 

physical model differs from those used so far in the literature for the analysis of phase-change memories. The 

preliminary results are encouraging and stimulate further refinements of the theory. In this respect, several aspects 

may be tackled. For instance, at present only two trap levels are included in the Monte Carlo scheme: future 

developments of the model will include trap bands as well as transitions from localized to extended conduction-band 

states. 

Another aspect is the electrostatic part of the simulations, whose important role has been anticipated in section 3. The 

fully 3D, self-consistent solution of the Poisson equation coupled with the Monte Carlo simulation is very demanding. 

Nevertheless, in the Monte Carlo simulations presented here the electron transitions between two traps have in fact 

been treated by considering two point-like Coulombic centers in three dimensions. In contrast, to speed up the 

calculations, in the transition between a contact and a trap the charge of the latter has preliminarily been spread over a 

plane parallel to the contact. This has been done to the purpose of keeping the electric potential constant over the 

contact without resorting to the image-charge method: the latter, in fact, would significantly alter the total charge due 

to the small number of charges trapped inside the device. Spreading the trapped charge over a plane is equivalent to 

treating the interaction between a trap and a contact as a 1D problem. Finally, another issue that needs to be improved 

is the contribution of the barrier lowering to the parameter  in (2), whose expression, as mentioned in section 3, is 

derived from the standard expression of tunneling through a rectangular barrier. 
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